BOARD QUESTION PAPER : MARCH 2014

Note:

i. All questions are compulsory.
ii. Figures to the right indicate full marks.
iii. Graph papers are not necessary for L.P.P. Only rough sketch of the graph is expected.
iv. Answers to both the sections should be written in the separate answer books.
v. Answer to every new question must be written on a new page.

Section - I

Q.1. Attempt any SIX of the following:

i. \quad If $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 5 & 4 & 0\end{array}\right], B=\left[\begin{array}{ccc}1 & 4 & 3 \\ -2 & 5 & 0\end{array}\right]$
then find $2 \mathrm{~A}+3 \mathrm{~B}$.
ii. If the function f is continuous at $x=1$, then find $\mathrm{f}(1)$.

Where $\mathrm{f}(x)=\frac{x^{2}-3 x+2}{x-1}$ for $x \neq 1$.
iii. If $x=\tan ^{-1} \mathrm{t}$ and $y=\mathrm{t}^{3}$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
iv. Evaluate: $\int \sin ^{2} x \mathrm{~d} x$.
v. Write negation of the following statements:
a. Chetan has black hair and blue eyes.
b. $\quad \exists x \in \mathrm{R}$ such that $x^{2}+3>0$.
vi. If $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right], B=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ then find $|A B|$.
vii. Evaluate: $\int \frac{\mathrm{d} x}{4-9 x^{2}}$
viii. If the function f is continuous at $x=2$, then find ' k '

$$
\text { where } \begin{align*}
\mathrm{f}(x) & =\frac{x^{2}+5}{x-1}, \text { for } 1<x \leq 2 \\
& =\mathrm{k} x+1, \text { for } x>2 \tag{2}
\end{align*}
$$

Q.2. (A) Attempt any TWO of the following:
i. If $x^{y}=\mathrm{e}^{x-y}$, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\log x}{(1+\log x)^{2}}$
ii. If $\sin y=x \sin (a+y)$
prove that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sin ^{2}(\mathrm{a}+y)}{\sin \mathrm{a}}$
iii. Discuss extreme values of the function $\mathrm{f}(x)=x \log x$.
(B) Attempt any TWO of the following:
i. Discuss the continuity of the function f at $x=0$,

$$
\text { where } \begin{align*}
\mathrm{f}(x) & =\frac{5^{x}+5^{-x}-2}{\cos 2 x-\cos 6 x}, & & \text { for } x \neq 0 \\
& =\frac{1}{8}(\log 5)^{2}, & & \text { for } x=0 \tag{4}
\end{align*}
$$

ii. The expenditure E_{C} of a person with income I is given by $\mathrm{E}_{\mathrm{C}}=(0.000035) \mathrm{I}^{2}+(0.045) \mathrm{I}$

Find marginal propensity to consume (MPC) and average propensity to consume (APC) when $\mathrm{I}=5000$.
iii. Evaluate: $\int x \cot ^{-1} x \mathrm{~d} x$
Q.3. (A) Attempt any TWO of the following:
i. If $\mathrm{p}:$ It is a day time.
q : It is warm.
Given the verbal statements for the following symbolic statements:
a. $\quad \mathrm{p} \wedge \sim \mathrm{q}$
b. $\quad \mathrm{p} \vee \mathrm{q}$
c. $\quad p \leftrightarrow q$
ii. Using the truth table, examine whether the statement pattern $(p \rightarrow q) \leftrightarrow(\sim p \vee q)$ is a tautology, a contradiction or a contingency.
iii. The cost C of producing x articles is given as
$C=x^{3}-16 x^{2}+47 x$.
For what values of x will the average cost be decreasing?
(B) Attempt any TWO of the following:
i. If $\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 3 & 1\end{array}\right]$ then find A^{-1} by using elementary transformation.
ii. Evaluate: $\int_{0}^{3} \frac{\mathrm{~d} x}{x+\sqrt{9-x^{2}}}$
iii. Find the volume of a solid obtained by the complete revolution of the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{25}=1$ about X - axis.

BOARD QUESTION PAPER : MARCH 2014

Note:

i. All questions are compulsory.
ii. Figures to the right indicate full marks.
iii. Answer to every question must be written on a new page.
iv. L.P.P. problem should be solved on graph paper.
v. Log table will be provided on request.
vi. Write answers of Section - I and Section - II in one answer book.

Section - I

Question 1 to 3 (based on section I) are given in our book STD XII (COMMERCE) MATHEMATICS AND STATISTICS - I

Section - II

Q.4. Attempt any SIX of the following:

i. Alex spends 20% of his income on food items and 12% on conveyance, If for the month of June 2010, he spent ₹ 900 on conveyance, find his expenditure on food items during the same month.
ii. Find the premium on a property worth ₹ $12,50,000$ at 3% if the property is fully insured.
iii. The following table gives the age of the husbands and of the wives:

Age of wives (in years)	Age of husbands (in years)			
	$20-30$	$30-40$	$40-50$	$50-60$
$15-25$	5	9	3	-
$25-35$	-	10	25	2
$35-45$	-	1	12	2
$45-55$	-	-	4	16
$55-65$	-	-	-	4

Find the marginal frequency distribution of the age of husbands.
iv. For a bivariate data $\bar{x}=53, \bar{y}=28, \mathrm{~b}_{\mathrm{YX}}=-1.5, \mathrm{~b}_{\mathrm{XY}}=-0.2$. Estimate Y , when $\mathrm{X}=50$.
v. Values of two regression coefficients between the variables X and Y are $b_{Y X}=-0.4$ and $b_{X Y}=-2.025$ respectively. Obtain the value of correlation coefficient.
vi. Verify whether the following function can be regarded as probability mass function (p.m.f.) for the given values of X :

X	-1	0	1
$\mathrm{P}(\mathrm{X}=x)$	-0.2	1	0.2

vii. The p.m.f. of a random variable X is

$$
\begin{aligned}
\mathrm{P}(x) & =\frac{1}{5}, \text { for } x=1,2,3,4,5 \\
& =0, \text { otherwise }
\end{aligned}
$$

Find E (X).
viii. The time (in hours) required to perform the printing and binding operations (in that order) for each book is given in the following table:

Books	I	II	III	IV	V
Printing Machine M_{1}	3	7	4	5	7
Binding Machine M_{2}	6	2	7	3	4

Find the sequence that minimizes the total elapsed time (in hours) to complete the work.

Q.5. (A) Attempt any TWO of the following:

i. Find the present value of an annuity immediate of ₹ 18,000 p.a. for 3 years at 9% p.a. compounded annually. [Given $(1.09)^{-3}=0.7722$]
ii. Compute rank correlation coefficient for the following data:

R_{x}	1	2	3	4	5	6
R_{y}	6	3	2	1	4	5

iii. If the rank correlation coefficient is $\frac{2}{3}$ and $\sum d_{i}^{2}=55$, then find the number of pairs of observations. Assume that no rank is repeated.
(B) Attempt any TWO of the following:
i. From the following data, find crude death rates (C.D.R.) for Town I and Town II, and comments on the results:

Age group (years)	Town I		Town II	
	Population	No. of deaths	Population	No. of deaths
$0-10$	1500	45	6000	150
$10-25$	5000	30	6000	40
$25-45$	3000	15	5000	20
45 and above	500	22	3000	54

ii. Calculate the quantities indicated by '?' for the following part of a life table:

x	l_{x}	$\mathrm{~d}_{x}$	q_{x}	$\mathrm{~L}_{x}$	$\mathrm{~T}_{x}$	e_{x}^{0}
4	9100	60	$?$	$?$	510000	$?$
5	$?$	45				

iii. The Probability that a bomb dropped from an aeroplane will strike a target is $\frac{1}{5}$. If four bombs are dropped, find the probability that
a. exactly two will strike the target.
b. at least one will strike the target.
Q.6. (A) Attempt any TWO of the following:
i. Amit and Rohit started a business by investing ₹ 20,000 each. After 3 months Amit withdrew $₹ 5,000$ and Rohit put in ₹ 5,000 additionally. How should a profit of ₹ 12,800 be divided between them at the end of the year?
ii. A bill of ₹ 7,500 was discounted for ₹ 7,290 at a bank on $28^{\text {th }}$ October 2006. If the rate of interest was 14% p.a., what is the legal due date of the bill?
iii. Let X be the number of matches played by the player and Y be the number of matches in which he scored more than 50 runs. The following data shown is obtained for 5 players:

No. of Matches	Data of matches of 5 players				
Played (X)	21	25	26	24	19
Scored more than 50 in a match (Y)	19	20	24	21	16

Find the regression line of X on Y .
(B) Attempt any TWO of the following:
i. Find the sequence that minimizes total elapsed time (in hours) required to complete the following jobs on two machines M_{1} and M_{2} in the order $M_{1}-M_{2}$. Also find the minimum elapsed time T and idle times for the two machines.

Jobs	A	B	C	D	E
M_{1}	5	1	9	3	10
M_{2}	2	6	7	8	4

ii. Solve the following L. P. P. :

Minimize : $Z=4 x+2 y$
Subject to : $3 x+y \geq 27$,
$x+y \geq 21$,
$x+2 y \geq 30$,
$x \geq 0, y \geq 0$
iii. Solve the following L. P. P.:

Maximize : $Z=4 x+10 y$
Subject to : $2 x+5 y \leq 10$
$5 x+3 y \leq 15$
$x \geq 0, y \geq 0$

