BOARD QUESTION PAPER : MARCH 2014

Note:

- i. All questions are compulsory.
- ii. Figures to the right indicate full marks.
- iii. Graph papers are not necessary for L.P.P. Only rough sketch of the graph is expected.
- iv. Answers to both the sections should be written in the separate answer books.
- v. Answer to every new question must be written on a new page.

Section – I

Q.1.	Atte	mpt any SIX of the following:	[12]
	i.	If $A = \begin{bmatrix} 1 & 2 & -3 \\ 5 & 4 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 4 & 3 \\ -2 & 5 & 0 \end{bmatrix}$	
		then find $2A + 3B$.	(2)
	ii.	If the function f is continuous at $x = 1$, then find f(1).	
		Where $f(x) = \frac{x^2 - 3x + 2}{x - 1}$ for $x \neq 1$.	(2)
	iii.	If $x = \tan^{-1}t$ and $y = t^3$, find $\frac{dy}{dx}$.	(2)
	iv.	Evaluate: $\int \sin^2 x dx$.	(2)
	v.	Write negation of the following statements:	
		a. Chetan has black hair and blue eyes.	
		b. $\exists x \in \mathbb{R} \text{ such that } x^2 + 3 > 0.$	(2)
	vi.	If $A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ then find $ AB $.	(2)
	vii.	Evaluate: $\int \frac{dx}{4-9x^2}$	(2)
	viii.	If the function f is continuous at $x = 2$, then find 'k'	
		where $f(x) = \frac{x^2 + 5}{x - 1}$, for $1 < x \le 2$	
		= kx + 1, for $x > 2$	(2)
Q.2.	(A)	Attempt any TWO of the following:	[6][14]
	i.	If $x^{\nu} = e^{x-\nu}$, show that $\frac{dy}{dx} = \frac{\log x}{(1+\log x)^2}$	(3)
	ii.	If $\sin y = x \sin (a + y)$	
		prove that $\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$	(3)
	iii.	Discuss extreme values of the function $f(x) = x \log x$.	(3)
			327

(B) Attempt any TWO of the following: Discuss the continuity of the function f at x = 0, i. where $f(x) = \frac{5^x + 5^{-x} - 2}{\cos 2x - \cos 6x}$, for $x \neq 0$ = $\frac{1}{8} (\log 5)^2$, for x = 0(4) The expenditure E_C of a person with income I is given by $E_C = (0.000035) I^2 + (0.045) I$ ii. Find marginal propensity to consume (MPC) and average propensity to consume (APC) when I = 5000. (4) Evaluate: $\int x \cot^{-1} x dx$ iii. (4) Attempt any TWO of the following: Q.3. (A) [6][14] If p: It is a day time. i q: It is warm. Given the verbal statements for the following symbolic statements: a. $p \wedge \sim q$ b. $p \lor q$ (3) c. $p \leftrightarrow q$ Using the truth table, examine whether the statement pattern $(p \rightarrow q) \leftrightarrow (\sim p \lor q)$ is a ii. tautology, a contradiction or a contingency. (3) The cost C of producing x articles is given as iii. $C = x^3 - 16x^2 + 47x$. For what values of x will the average cost be decreasing? (3) Attempt any TWO of the following: **(B)** $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ If $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 3 & 1 \end{bmatrix}$ then find A^{-1} by using elementary transformation. i. (4) Evaluate: $\int_{0}^{3} \frac{dx}{x + \sqrt{9 - x^2}}$ ii. (4) Find the volume of a solid obtained by the complete revolution of the ellipse $\frac{x^2}{36} + \frac{y^2}{25} = 1$ iii. about X - axis. (4)

BOARD QUESTION PAPER : MARCH 2014

Note:

- i. All questions are compulsory.
- ii. Figures to the right indicate full marks.
- iii. Answer to every question must be written on a new page.
- iv. L.P.P. problem should be solved on graph paper.
- v. Log table will be provided on request.
- vi. Write answers of Section I and Section II in one answer book.

Section – I

Question 1 to 3 (based on section I) are given in our book STD XII (COMMERCE) MATHEMATICS AND STATISTICS - I

Section – II

Q.4. Attempt any SIX of the following:

- Alex spends 20% of his income on food items and 12% on conveyance, If for the month of June 2010, he spent ₹ 900 on conveyance, find his expenditure on food items during the same month.
- ii. Find the premium on a property worth \gtrless 12,50,000 at 3% if the property is fully insured. (2)
- iii. The following table gives the age of the husbands and of the wives:

Age of wives	Age of husbands (in years)				
(in years)	20-30	30-40	40-50	50-60	
15 - 25	5	9	3	_	
25 - 35		10	25	2	
35-45	-	1	12	2	
45 - 55	—	_	4	16	
55 - 65	-	-	_	4	

Find the marginal frequency distribution of the age of husbands. (2)

iv. For a bivariate data $\overline{x} = 53$, $\overline{y} = 28$, $b_{YX} = -1.5$, $b_{XY} = -0.2$. Estimate Y, when X = 50. (2)

- v. Values of two regression coefficients between the variables X and Y are $b_{YX} = -0.4$ and $b_{XY} = -2.025$ respectively. Obtain the value of correlation coefficient. (2)
- vi. Verify whether the following function can be regarded as probability mass function (p.m.f.) for the given values of X: (2)

Х	-1	0	1
P(X = x)	-0.2	1	0.2

vii. The p.m.f. of a random variable X is

$$P(x) = \frac{1}{5}, \text{ for } x = 1, 2, 3, 4, 5$$

= 0, otherwise
Find E (X).

(2)

(2)

Std. XII : Commerce (Maths - II)

The time (in hours) required to perform the printing and binding operations (in that order) for viii. each book is given in the following table:

Books	Ι	II	III	IV	V
Printing Machine M ₁	3	7	4	5	7
Binding Machine M ₂	6	2	7	3	4

Find the sequence that minimizes the total elapsed time (in hours) to complete the work. (2)

Attempt any TWO of the following: Q.5. (A)

- i. Find the present value of an annuity immediate of ₹ 18,000 p.a. for 3 years at 9% p.a. compounded annually. [Given $(1.09)^{-3} = 0.7722$] (3)
- Compute rank correlation coefficient for the following data: ii.

R _x	1	2	3	4	5	6
\mathbf{R}_{y}	6	3	2	1	4	5

If the rank correlation coefficient is $\frac{2}{3}$ and $\sum d_i^2 = 55$, then find the number of pairs of iii. observations. Assume that no rank is repeated. (3)

Attempt any TWO of the following: **(B)**

i. From the following data, find crude death rates (C.D.R.) for Town I and Town II, and comments on the results:

Age group	Тс	own I	Том	/n II
(years)	Population	No. of deaths	Population	No. of deaths
0 - 10	1500	45	6000	150
10-25	5000	30	6000	40
25-45	3000	15	5000	20
45 and above	500	22	3000	54

Calculate the quantities indicated by '?' for the following part of a life table: ii.

x	l_x	\mathbf{d}_x	\mathbf{q}_x	L _x	T_x	e_x^0
4	9100	60	?	?	510000	?
5	?	45				

The Probability that a bomb dropped from an aeroplane will strike a target is $\frac{1}{5}$. If four iii.

bombs are dropped, find the probability that

- exactly two will strike the target. a.
- at least one will strike the target. b.

Attempt any TWO of the following: Q.6. (A)

- i. Amit and Rohit started a business by investing \gtrless 20,000 each. After 3 months Amit withdrew ₹ 5,000 and Rohit put in ₹ 5,000 additionally. How should a profit of ₹ 12,800 be divided between them at the end of the year? (3)
- A bill of ₹ 7,500 was discounted for ₹ 7,290 at a bank on 28th October 2006. If the rate of ii. interest was 14% p.a., what is the legal due date of the bill? (3)

432

(4)

(4)

(4)

- (6)[14]

(6)[14]

(3)

Board Question Paper : March 2014

iii. Let X be the number of matches played by the player and Y be the number of matches in which he scored more than 50 runs. The following data shown is obtained for 5 players:

No. of Matches	Data of matches of 5 players				
Played (X)	21	25	26	24	19
Scored more than 50 in a match (Y)	19	20	24	21	16

Find the regression line of X on Y.

(B) Attempt any TWO of the following:

i. Find the sequence that minimizes total elapsed time (in hours) required to complete the following jobs on two machines M_1 and M_2 in the order $M_1 - M_2$. Also find the minimum elapsed time T and idle times for the two machines. (4)

Jobs Machines	А	В	С	D	Е
M ₁	5	1	9	3	10
M ₂	2	6	7	8	4

- ii. Solve the following L. P. P. :
 - Minimize : Z = 4x + 2ySubject to : $3x + y \ge 27$, $x + y \ge 21$, $x + 2y \ge 30$, $x \ge 0, y \ge 0$
- iii. Solve the following L. P. P.: Maximize : Z = 4x + 10ySubject to : $2x + 5y \le 10$ $5x + 3y \le 15$

 $x \ge 0, y \ge 0$

(4)

(4)

(3)