# BOARD QUESTION PAPER: MARCH 2014 PHYSICS

Time: 3 Hours Total Marks: 70

#### Note:

- i. All questions are compulsory.
- ii. Neat diagrams must be drawn wherever necessary.
- iii. Figures to the right indicate full marks.
- iv. Use of only logarithmic table is allowed.
- v. All symbols have their usual meaning unless otherwise stated.

#### SECTION - I

### Q.1. Attempt any SIX:

[12]

- i. Explain the rise of liquid in the capillary on the basis of pressure difference.
- ii. Show graphical representation of energy distribution spectrum of perfectly black body.
- iii. The escape velocity of a body from the surface of the earth is 11.2 km/s. If a satellite were to orbit close to the surface, what would be its critical velocity?
- iv. A pipe which is open at both ends is 47 cm long and has an inner diameter 5 cm. If the speed of sound in air is 348 m/s, calculate the fundamental frequency of air column in that pipe.
- v. Show that R.M.S. velocity of gas molecules is directly proportional to square root of its absolute temperature.
- vi. For a particle performing uniform circular motion  $\overrightarrow{v} = \overrightarrow{\omega} \times \overrightarrow{r}$  obtain an expression for linear acceleration of the particle performing non-uniform circular motion.
- vii. A stone of mass 1 kg is whirled in horizontal circle attached at the end of a 1 m long string. If the string makes an angle of  $30^{\circ}$  with vertical, calculate the centripetal force acting on the stone. (g =  $9.8 \text{ m/s}^2$ ).
- viii. A solid cylinder of uniform density of radius 2 cm has mass of 50 g. If its length is 12 cm, calculate its moment of inertia about an axis passing through its centre and perpendicular to its length.

# Q.2. Attempt any THREE:

[9]

- . Derive an expression for acceleration due to gravity at depth 'd' below the earth's surface.
- ii. A copper metal cube has each side of length 1 m. The bottom edge of the cube is fixed and tangential force  $4.2 \times 10^8$  N is applied to a top surface. Calculate the lateral displacement of the top surface if modulus of rigidity of copper is  $14 \times 10^{10}$  N/m<sup>2</sup>.
- iii. State an expression for K.E. (kinetic energy) and P.E. (potential energy) at displacement 'x' for a particle performing linear S.H.M. Represent them graphically. Find the displacement at which K.E. is equal to P.E.
- iv. The equation of simple harmonic progressive wave is given by  $y = 0.05 \sin \pi \left[ 20t \frac{x}{6} \right]$ , where all quantities are in S. I. units. Calculate the displacement of a particle at 5 m from origin and at the instant 0.1 second.

**Q.3.** State and prove the theorem of 'parallel axes'.

Calculate the density of paraffin oil, if glass capillary of diameter 0.25 mm dipped in paraffin oil of surface tension 0.0245 N/m rises to a height of 4 cm.

(Angle of contact of paraffin with glass =  $28^{\circ}$  and acceleration due to gravity =  $9.8 \text{ m/s}^2$ .)

[7]

[7]

[7]

OR

Q.3. A wire of density '\rho' and Young's modulus 'Y' is stretched between two rigid supports separated by a distance 'L' under tension 'T'. Derive an expression for its frequency in fundamental mode.

Hence show that  $n = \frac{1}{2L} \sqrt{\frac{Yl}{\rho L}}$ , where symbols have their usual meanings.

When the length of a simple pendulum is decreased by 20 cm, the period changes by 10%. Find the original length of the pendulum.

- Q.4. Select and write the most appropriate answer from the given alternatives for each sub-auestion:
  - The bulging of earth at the equator and flattening at the poles is due to \_\_\_\_\_.
    - (A) centripetal force

- (B) centrifugal force
- gravitational force (C)
- (D) electrostatic force
- Young's modulus of material of wire is 'Y' and strain energy per unit volume is 'E', then the ii. strain is
  - (A)  $\sqrt{\frac{Y}{2E}}$  (B)  $\sqrt{\frac{E}{V}}$  (C)  $\sqrt{\frac{2E}{V}}$
- (D)  $\sqrt{2EY}$

- iii. The wavelength range of thermal radiation is
  - from 4000 Å to 7000 Å (A)
- (B) from 7700 Å to  $4 \times 10^6$  Å
- from  $10^6$  Å to  $10^8$  Å (C)
- (D) from  $4 \times 10^{-12} \text{ Å to } 4 \times 10^8 \text{ Å}$
- A pipe open at both ends resonates to a frequency 'n<sub>1</sub>' and a pipe closed at one end resonates iv. to a frequency 'n<sub>2</sub>'. If they are joined to form a pipe closed at one end, then the fundamental frequency will be \_\_\_\_\_.
  - (A)  $\frac{n_1 n_2}{2n_2 + n_1}$

(B)  $\frac{2n_2n_1}{2n_2 + n_1}$ (D)  $\frac{n_2 + 2n_1}{n_1n_2}$ 

- The phase difference between displacement and acceleration of a particle performing S.H.M. v.
  - (A)  $\frac{\pi}{2}$  rad
- (B)  $\pi$  rad (C)  $2\pi$  rad
- (D)  $\frac{3\pi}{2}$  rad
- Let n<sub>1</sub> and n<sub>2</sub> be the two slightly different frequencies of two sound waves. The time interval vi. between waxing and immediate next waning is \_\_\_\_\_

  - (A)  $\frac{1}{n_1 n_2}$  (B)  $\frac{2}{n_1 n_2}$  (C)  $\frac{n_1 n_2}{2}$
- (D)  $\frac{1}{2(n_1-n_2)}$
- A metal ball cools from 64 °C to 50 °C in 10 minutes and to 42 °C in next 10 minutes. The ratio of rates of fall of temperature during the two intervals is \_\_\_\_\_.

(C)

(D) 2.5

#### **SECTION - II**

# Q.5. Attempt any SIX:

[12]

- i. Show that the orbital magnetic dipole moment of a revolving electron is  $\frac{\text{evr}}{2}$ .
- ii. Describe the construction of photoelectric cell.
- iii. For a glass plate as a polariser with refractive index 1.633, calculate the angle of incidence at which light is polarised.
- iv. The susceptibility of magnesium at 300 K is  $2.4 \times 10^{-5}$ . At what temperature will the susceptibility increase to  $3.6 \times 10^{-5}$ ?
- v. Draw a neat labelled diagram for Davisson and Germer experiment, for diffraction of electron wave.
- vi. Explain the terms: (a) Transmitter and (b) receiver in communication system.
- vii. A metal rod  $\frac{1}{\sqrt{\pi}}$  m long rotates about one of its ends perpendicular to a plane whose magnetic induction is  $4 \times 10^{-3}$  T. Calculate the number of revolutions made by the rod per second if the e.m.f. induced between the ends of the rod is 16 mV.
- viii. Find the wave number of a photon having energy of 2.072 eV.

Given: Charge on electron =  $1.6 \times 10^{-19}$  C, Velocity of light in air =  $3 \times 10^8$  m/s, Planck's constant =  $6.63 \times 10^{-34}$  J-s.

Planck's constant  $-0.03 \times 10$ 

Q.6. Attempt any THREE:

iii.

[9]

- i. State Ampere's circuital law. Obtain an expression for magnetic induction along the axis of toroid.
- ii. Calculate the radius of second Bohr orbit in hydrogen atom from the given data.

Mass of electron =  $9.1 \times 10^{-31}$  kg Charge on the electron =  $1.6 \times 10^{-19}$  C

Planck's constant =  $6.63 \times 10^{-34}$  J-s.

Permittivity of free space =  $8.85 \times 10^{-12} \text{ C}^2/\text{Nm}^2$ 

Explain the working of P-N junction diode in forward and reverse biased mode.

iv. A network of four capacitors of 6  $\mu F$  each is connected to a 240 V supply. Determine the charge on each capacitor.



| <b>Q.7.</b> | Describe biprism experiment to find the wavelength of monochromatic light. Draw the necessary |
|-------------|-----------------------------------------------------------------------------------------------|
|             | ray diagram for magnified and diminished images of virtual sources.                           |

If the difference in velocities of light in glass and water is  $2.7 \times 10^7$  m/s, find the velocity of light in air.

(Refractive index of glass = 1.5, Refractive index of water = 1.333)

[7]

OR

**Q.7.** State the principle of a transformer. Explain its construction and working. Derive an expression for the ratio of e.m.f.s in terms of number of turns in primary and secondary coil.

Two diametrically opposite points of a metal ring are connected to two terminals of the left gap of metre bridge. The resistance of 11  $\Omega$  is connected in right gap. If null point is obtained at a distance of 45 cm from the left end, find the resistance of metal ring.

[7]

# Q.8. Select and write the most appropriate answer from the given alternatives for each sub-question:

[7]

i. Intensity of electric field at a point close to and outside a charged conducting cylinder is proportional to \_\_\_\_\_.

(r is the distance of a point from the axis of cylinder)

(A)  $\frac{1}{r}$ 

(B)  $\frac{1}{r^2}$ 

(C)  $\frac{1}{r^3}$ 

(D) r<sup>3</sup>

- ii. When a hole is produced in P-type semiconductor, there is \_\_\_\_\_.
  - (A) extra electron in valence band
  - (B) extra electron in conduction band
  - (C) missing electron in valence band
  - (D) missing electron in conduction band
- iii. The outermost layer of the earth's atmosphere is
  - (A) stratosphere

(B) mesosphere

(C) troposphere

(D) ionosphere

- iv. Accuracy of potentiometer can be easily increased by \_\_\_\_\_.
  - (A) increasing resistance of wire

(B) decreasing resistance of wire

(C) increasing the length of wire

(D) decreasing the length of wire

- v. When electron in hydrogen atom jumps from second orbit to first orbit, the wavelength of radiation emitted is  $\lambda$ . When electron jumps from third orbit to first orbit, the wavelength of emitted radiation would be \_\_\_\_\_.
  - $(A) \qquad \frac{27}{32} \gamma$

(B)  $\frac{32}{27}\lambda$ 

(C)  $\frac{2}{3}\lambda$ 

(D)  $\frac{3}{2}\lambda$ 

- vi. An ideal voltmeter has \_\_\_\_\_.
  - (A) low resistance

(B) high resistance

(C) infinite resistance

(D) zero resistance

- vii. The resolving power of telescope of aperture 100 cm for light of wavelength  $5.5 \times 10^{-7}$  m is
  - $\overline{\text{(A)}}$  0.149 × 10<sup>+7</sup>

(B)  $1.49 \times 10^{+7}$ 

(C)  $14.9 \times 10^{+7}$ 

(D)  $149 \times 10^{+7}$